
MAGE
Release 6.3

Oct 02, 2022

Contents

1 Introduction 1

2 Contents 3
2.1 Installation with Git . 3
2.2 Installation with Docker . 5
2.3 Preparing MAGE for first use . 6
2.4 Mage Query Language (MQL) . 10
2.5 Conventions patterns . 13
2.6 Security . 17
2.7 Development help: model diagrams . 17

Python Module Index 21

Index 23

i

ii

CHAPTER 1

Introduction

MAGE is an assistant for managing the different environments all big IT projects will eventually end up with (devel-
opment, user acceptance, integration, preproduction, etc). It will never do any action on the environments by itself,
such as installing a patch, but will provide many tools to help script these actions (the list of which is specific to each
project) and to keep tabs on the environments (this was installed at that time, etc).

Basically, it’s a scripting toolbox with some kind of CMDB and DSL designed for out-of-production environments, as
well as a publishing portal for all these data.

A partial list of functions:

• A referential for the environments. What is their content (databases, programs, configurations, . . . basically anything is possible), the description of these contents (login/password, directory paths, . . .). A simple query API, accessible through a simple HTTP GET, is provided.

– Scripting API: this enables a huge deal of automation in scripts. For example, a shell script supposed
to backup all environments will only have to query MAGE for the elements to backup and will retrieve
all necessary data - such as connection information. All it has to know for this is a MAGE account,
and submit a query.

– Ease of use: the referential was built with ease of use in mind. For example, every environment can
easily be cloned instead of having to define every component. It is even possible to define templates.

– Naming conventions: MAGE can also help enforce naming conventions (which will be automatically
applied on an environment duplication for example).

– Easy admin: a fully-featured web site to easily manage your environments, change names, descrip-
tions, every last piece of data stored in the referential. It is based on the Django admin site, for those
who know this marvellous little web framework.

– Publication: Web pages with clear graphs and tables are automatically created to provide all the data
the environments users will need.

• A full SCM system

– SCM referential: stores references to every patchset/installset/binaries/. . . , the associated versions.

– Configuration ordering: whatever the version naming convention is (A, B, C or 321.1.2, 2.2.3,
or really whatever), MAGE will be able to determine a version order thanks to a nifty dependency

1

MAGE, Release 6.3

system (a delivery is either FULL without dependencies on other components versions OR requires
other components to be at a certain version level (exact, or superior to, or inferior to)).

– Backup tracking: backups are just another kind of FULL patchset - and so are treated as such. A
special API is provided to enable scripts to easily store backup data with simple HTTP GETs.

– Configuration tracking: the heart of the SCM module. Each time a configuration is modified through
the installation of a patchset (or assimilated), it should be registered (through a simple GET). MAGE
will then provide many web pages detailing the history of environments, the current versions of ele-
ments, a time machine, etc.: basically, all the SCM views that are usually needed on big IT projects,
and then some.

– Publication: all the data is made freely accessible to everyone on web pages, limiting the volume of
basic and unproductive questions the IT team may receive.

2 Chapter 1. Introduction

CHAPTER 2

Contents

2.1 Installation with Git

2.1.1 Prerequisites

• OS: every OS with a supported Python 3.10 distribution. (Windows, most Linux distributions, Solaris, . . .)

• The latest Python 3.10.x (not Python 2.x)

• A git client (on Windows, the recommended distribution is GitHub’s http://msysgit.github.io/)

• Optionally, a database (Oracle >= 10g, PostgresQL, mysql). Default is sqlite 3 - it is bundled with Python, so
nothing special is required. In other databases, you will need an account with the permission to create tables,
sequences and indexes (or their equivalent in your database).

2.1.2 MAGE itself

Checkout

Choose a directory in which to install MAGE. This directory will not be accessible to users. It will be referred to as
${MAGE_INSTALL_ROOT} in this document.:

git clone https://github.com/marcanpilami/MAGE.git

Libraries

These are installed with PIP:

Linux (sh, bash & similar) or Windows (pwsh)
cd $MAGE_INSTALL_ROOT
pip install -r requirements.txt --upgrade

3

http://msysgit.github.io/

MAGE, Release 6.3

Settings

Copy the file ${MAGE_INSTALL_ROOT}/MAGE/local_settings.sample.py to
${MAGE_INSTALL_ROOT}/MAGE/local_settings.py

Edit the file. Every setting is explained in the file. Of particular importance are:

• Database configuration.

• Allowed hosts (unless running in debug mode)

• Static root - this directory will be directly accessible to users

Sync

In the ${MAGE_INSTALL_ROOT} directory, create the database objects by running:

python manage.py migrate
python manage.py collectstatic
python manage.py createsuperuser
python manage.py synccheckers

You will be asked to create a root account. Accept and do not forget the password you specify.

Test

Run:

python manage.py runserver 0.0.0.0:8000

This will launch a small web server listening on an address printed on the standard output. With a browser, try this
address. You should then access MAGE’s homepage.

Initial data

If you just want to play with demo data, run the following commands:

python manage.py shell
from scm.demo_items import create_test_is
create_test_is()
exit

Otherwise, the database is yours to populate through the GUI and scripts. For writing bootstrap script, inspiration
should be taken from the one used above.

WSGI/OSGI/FastCGI/SCGI/AJP integration

For deploying MAGE inside a full-fledged web server, please follow the instructions at https://docs.djangoproject.
com/en/4.1/howto/deployment/wsgi/.

Please note that all new deployments should use WSGI and NOT FastCGI which is deprecated in the Apache world.

4 Chapter 2. Contents

https://docs.djangoproject.com/en/4.1/howto/deployment/wsgi/
https://docs.djangoproject.com/en/4.1/howto/deployment/wsgi/

MAGE, Release 6.3

2.2 Installation with Docker

2.2.1 Prerequisites

• OS: a recent Linux

• Docker daemon or equivalent

• Optionally, a database (Oracle >= 10g, PostgresQL, mysql). Default is sqlite 3 - it is bundled with Python, so
nothing special is required. In other databases, you will need an account with the permission to create tables,
sequences and indexes (or their equivalent in your database).

– Obviously the database can also run inside Docker, but this is your choice.

2.2.2 MAGE itself

Just run:

docker run -it -e "DJANGO_ROOT_INITIAL_PASSWORD=something" -e "MAGE_CREATE_DEMO_
→˓DATA=True" -e "MAGE_ALLOW_MIGRATIONS=True" -p 8000:8000 enioka/mage:nightly

Other available image tags are latest or specific version tags. Full list available on Docker Hub.

Configuration can be done through environment variables:

• database properties

– DATABASE_ENGINE: either nothing (sqlite3) or a specific driver
(django.db.backends.postgresql_psycopg2 for postresql, django.db.backends.mysql for MySQL).

– DATABASE_NAME

– DATABASE_HOST

– DATABASE_PORT

– DATABASE_USER

– DATABASE_PASSWORD

• security properties:

– DJANGO_ALLOWED_HOSTS: a comma-separated list of HTTP hostnames allowed to query MAGE.
Very useful behind a reverse proxy. Wildcard is also possible.

– DJANGO_SECRET_KEY: set it to a unique random string. Used for some signature purposes.

– DJANGO_ROOT_INITIAL_PASSWORD: if set, a user named root is created with this password if it does
not exist yet.

This image contains drivers for sqlite, postgresql and sqlite3. Using this image as a base image, it is possible to create
MAGE images with other drivers in custom images.

If you are using sqlite for the database, note the directory /code/deployment/db is a volume and contains the database
file.

The image listens on port 8000.

The image runs database migrations on startup if needed if MAGE_ALLOW_MIGRATIONS is set to True.

2.2. Installation with Docker 5

MAGE, Release 6.3

2.3 Preparing MAGE for first use

MAGE is rather generic, allowing to specify a wide variety of environment types in various contexts. Therefore, before
starting to use MAGE, there are a few notions that must be defined in the tool in the order given here.

It is recommended to read the page fully before actually setting parameters. Afterwards, connect to the administration
interface (default is site_root/admin, there is an ‘A’ link in the top right corner of the home page), login (with the super
user created during install) and for each paragraph create the desired objects.

Warning: the idea is to follow the order given in the page ‘new reference items’, available from the home page.

2.3.1 Setting the technical context

The first thing to do is to decide how to model the different environments. The main ideas here are:

• every ‘item’ that can be packaged separately and has to be tracked (as in version tracking) must have its own
component description.

• every data needed for administration (DNS, login, ports. . .) must be available in the model. Links between
component descriptions must make this information available simply in the context of a modification of config-
uration of the tracked elements. (if a Java war package is installed, it must be easy to go from the package to the
admin URL for example).

• the simpler, the better!

For each component that was identified, a component description must be created. It is simply a list of fields and
relationships.

Note: the standard way of creating these is through the administration web UI (follow the links inside the ‘new
reference items’ page). Scripting is also possible.

Basics attributes

• Name - this is a code that will be used when a short and stable in time name is preferable

• Description - the verbose ‘public’ name.

• Tag - a simple unbound classifier. Please use a tag, it makes many page more readable.

• Self description pattern: a component expression which resolution gives the ‘name’ of instances.

Simple fields. A simple field is just what its name entails - a key/value pair. Values are always stored as strings, even
if a data type must be provided. The data type is actually used for widget selection and controls.

• short name: a valid Python identifier. (no spaces, letters and digits and underscores, cannot begin with an
underscore or with mage_)

• label: verbose name used in forms

• compulsory: for validation

• sensitive: if True, the values will be hidden to anyone but admins and scripts (NOT published to everyone)

• widget row: if None, won’t be published inside the environment description page. Otherwise, this gives the
order of fields in that page.

6 Chapter 2. Contents

MAGE, Release 6.3

Relationship fields

Computed fields

It is often interesting to make deductions instead of forcing administrators to input everything with many repetitions.
Computed fields exist for that. They allow to retrieve data from linked instances, to make basic mathematics operations,
to compose strings, to fallback on another field if it is null, etc. Please read the component expression reference and
the samples for this.

2.3.2 Setting the applicative context

Project

A project is nothing more than a classifier. It has no other interest than to regroup Environments (an Environment
belongs to zero or one Project).

It’s main use is in Conventions patterns, which can make use of its name and alternative names.

Application

This is a second level of classification: a project may have zero to many Applications. It can also be used in Conven-
tions. The different Logical Components (see below) all belong to one (and only one) Application, so this is a very
important classifier.

Note: ‘Project’ and ‘Application’ are just names. They can be considered as “Big project” and “Sub project”, or
“Program” and “Project”, etc.

Logical Component (LC)

It represents the “essence” of an item of the project. It can be an application, a configuration, a program. . . whatever.
Choosing the right granularity for LC is crucial - they are the foundation of everything else. As a rule of thumb, a
LC corresponds to an element you want to track in configuration/version on its own. The more there are, the more
complicated it will get but the more precise the collected data will be.

Now, choosing the configuration tracking granularity is up to the user, as no tool will ever automate this - there are
many trade-offs and therefore many different solutions.

class ref.models.LogicalComponent

name
The name of the logical component

application
The application the component belongs to (compulsory)

description
A (very) short text describing the use of the LC

scm_trackable
Default is True. If False, this LC will never be used in any Configuration Management operation (backup,
update, . . .)

2.3. Preparing MAGE for first use 7

MAGE, Release 6.3

Implementation Offer (CIC)

Note: internally, MAGE refers to this as a Component Implementation Class (CIC)

This is a technical way of actually implementing a logical component.

For example, if the LC is “Application B data storage”, there may be many CICs :

• an Oracle database schema

• a PostgreSQL database

• . . . whatever RDBMS

In a single project, all these possibilities may be used. To build on the previous example, Oracle will be used in
production but as Oracle is expensive, developers will use PostgreSQL. This is why the distinction (an abstraction
level, actually) between the CIC and the LC is very important.

Note: obviously, in in simple project, nothing prevents you from having only one CIC for a LC.

class ref.models.ComponentImplementationClass

name

description
The description object that will be used to actually instantiate the CIC. See above.

implements
The LogicalComponent implemented

sla
An optional SLA object

2.3.3 Environments

Environment Type

Each environment has - optionally - one associated Type. It provides common values for :

• an optional SLA

• a typology (production, conformity, . . .)

• backup related parameters

• types of component that are allowed for these environments.

At the beginning of the project, the first few types should be referenced. The list can be completed later - but never
purged, as it would allow to re-write history.

Environment

A potentially partial implementation of the functional and logical architecture of an IT perimeter, aiming at fulfilling
the needs of a certain population at a given period of the life-cycle of a system.

Basically: a bunch of items that may belong to other environments too. ‘Item’ will be defined later.

8 Chapter 2. Contents

MAGE, Release 6.3

Most of the time, they are built (in MAGE, but also in reality) by copying another one. Save, obviously, for the first
one.

class ref.models.Environment

name

buildDate
Default is at the time the Python object is created.

destructionDate
Planned destruction. Nullable.

description
Not nullable. Displayed pretty much everywhere.

manager
Name of the person in charge of using the environment. (often: team leader). Nullable.

project
Nullable.

typology
An environment type. Not nullable.

template_only
Default False. All environments can be copied and serve as templates for creating others. If this is ticked,
the environment will only be used for templating (there should be no actual implementation of the template)

At the beginning of a project, a first representative environment should be created though the admin (complete with
component instance, described below) for every different environment “template” you’ll have. This template will then
be copied each time a new environment is created. During copy, the following elements are preserved or remapped:

• members of the environment are all copied (the list can be filtered as a parameter - so the source template can
be “too complete”)

• relationships between members of the source environment become relationships between the copied members

• relationships between members of the source environment and other items not member of the environment
are preserved as-is in the copy, unless explicitly remapped (parameter). For example, an application server
belonging to the source environment runs on a Windows server that does not belong to the environment. The
copy of the environment will have a new application server running on the same server.

• some naming conventions will be applied to the copy (for example, to change the component instance names)

2.3.4 Environment content

After the context is fully described, it is time to fill in the environments with data that will be useful for scripting,
configuration tracking, . . .

Component Instance

A component Instance is the representation of an actual “thing” managed on the project. Basically, it is an instance of
CIC. To clarify things :

• Logical Component = “Application B data store”

• Component Implementation Class = “Oracle schema for B data store with High Availability”

2.3. Preparing MAGE for first use 9

MAGE, Release 6.3

• Component Instance = “schema my_schema_name (described by the items listed in Component Description
“Oracle Schema”)”

The component instance is described by the ComponentImplementationClass.description attribute of
the CIC. However, all CI have a few common attributes.

class ref.models.ComponentInstance

name
The meaning of this attribute depends of the described CIC. However, it should always enable the user to
identify an instance.

instantiates
The ComponentImplementationClass implemented. It is optional - not all component instances
need to be version tracked.

deleted
Instances are never deleted - they are hidden when they do not exist any more in the real world. This
enables to having a consistent configuration tracking (for example, backups still exist when an environment
is destroyed, and the user may want one day to restore it without loosing all the version data associated to
it)

environments
The different environments the instance belongs to. It may belong to multiple environment (may be the
case for a shared middleware) or to none (it may make no sense to attribute a shared server to all the
environments it supports)

Warning: often, only “component” is used instead of “Component Instance”.

At the beginning of a project, the new environments (created at the beginning of this page) should be filled with
component instances. Contrary to all other elements described on this page, there is no “Component Instance” page in
the admin site. This page instead sits inside the main MAGE portal.

2.4 Mage Query Language (MQL)

MQL is an SQL-like language allowing to query the component instance referential easily from everywhere, including
from shell scripts.

It allows to find component instances based on their attributes and, most important, based on the relationships they has
with other components. That way, scripts may easily find all the data they need to run. For example, just knowing the
hostname of the server it runs on, a script will be able to query all database accounts running on database instances
running on this server, and then backup or export them.

2.4.1 Grammar (EBNF)

quoted_string ::= := "'" .* "'"
identifier ::= := [a-zA-Z] [a-zA-Z0-9]*
navigation ::= := identifier ('.' identifier)*
query ::= := "SELECT" (navigation (',' navigation)* "FROM")? ("ENVIRONMENT" quoted_string)? ("LC" quoted_string)? ("OFFER" quoted_string)? ("IMPLEMENTATION" quoted_string)? "INSTANCES" ("WHERE" (navigation '=' quoted_string) ("AND" navigation '=' quoted_string)*)? "WITH COMPUTATIONS"?

mql_query:

10 Chapter 2. Contents

MAGE, Release 6.3

navigation:

identifier:

Diagrams generated with http://bottlecaps.de/rr/ui

Note: keywords such as SELECT are not actually case sensitive.

2.4.2 How to query

MQL is a filter language. That means that it works in a negative fashion: you begin with every existing component
instances, and the more filters you add, the less instances survive. It also means that everything is optional in MQL,
but “SELECT INSTANCES” - in this case, every single last instance is returned.

This section introduces all the different filters, from the simplest to the more complicated.

2.4. Mage Query Language (MQL) 11

http://bottlecaps.de/rr/ui

MAGE, Release 6.3

Query on attributes (simple)

In this case, the user knows a few attributes (usually the name) of the required component instance.:

SELECT INSTANCES WHERE port='1789'

In this case, ‘port’ is the name of a field of some (perhaps none!) components. This will retrieve all the component
instances that have a port field and which port field is equal to 1789.

Simple inverted commas are compulsory surrounding the value. In case there are some inside the value itself, double
the quotes to escape them.

Other examples::

SELECT INSTANCES WHERE name='ERP_TEC2_PU6'
SELECT INSTANCES WHERE description='it''s "beautiful" AND name='marsupilami'

Query on relations’ attributes

This is exactly the same as previously, except we use dotted-path notation to access the fields of the related component
instances.

Example:

SELECT INSTANCES WHERE server.dns='my.server.dns.org'

will select every component instance that has a relationship named ‘server’ pointing to another component instance
which field ‘dns’ equals ‘my.server.dns.org’.

Query on type

There are many component instance types: Oracle instances, web servers, batch programs, etc. To filter on this::

SELECT IMPLEMENTATION 'compo type' INSTANCES

Example:

SELECT IMPLEMENTATION 'jbossas' INSTANCES

will return every JBoss application server in the system.

Query on environment

To filter by environment, just use:

SELECT ENVIRONMENT ‘envt name’ INSTANCES

Example:

SELECT ENVIRONMENT 'DEV1' INSTANCES

12 Chapter 2. Contents

MAGE, Release 6.3

Selecting attributes

Computed fields

To avoid useless computations, computed fields are not present in the query results by default.

To get them, add ” WITH COMPUTATIONS” at the end of the query.

SELECT INSTANCES WITH COMPUTATIONS

Other fields

One can add fields from related instances at the beginning of the query.

SELECT name, server.dns FROM INSTANCES WHERE ...

This will only give two attributes: the name of the compoennt instance, and the dns of the server the instance runs on.

Warning: this is not efficient. Using computed fields is far better.

Final example

SELECT IMPLEMENTATION 'jbossapplication' INSTANCES WHERE datastore.name='prd_int' AND
→˓group.domain.name='jbossproddomain'

will look for applications named integration that:

• are linked to an Oracle Schema named prd_int

• run on a group (which is not named here)

– the group must be inside a domain named jbossproddomain

2.5 Conventions patterns

2.5.1 Introduction

Conventions are a way to rationalize the way components are named and created and speed up their creation. They
should reflect both the naming conventions of your project and its environment templates.

A convention can be defined for each standard field inside the component description (it is the ‘default’ field). They
are used:

• when a new component instance is created. All fields that have a default/convention value are set with it.

• when an environment is duplicated, all fields with a default/convention are reset with it.

Please note it is not compulsory to use conventions patterns as a default - a simple value - or nothing - is enough. But
it is strongly recommended to use them as they allow one click component instance creation, minimizing the risk of
error.

2.5. Conventions patterns 13

MAGE, Release 6.3

2.5.2 Simple naming patterns

Environment

Pattern Interpretation
%e% environment name (lower case)
%E% environment name (upper case)

If the component does not belong to an environment, NOENVIRONMENT will be used.

Application

Pattern Interpretation
%a% application name (lower case)
%A% application name (upper case)
%a1% application alternate name 1 (lower case)
%A1% application alternate name 1 (upper case)
%a2% application alternate name 2 (lower case)
%A2% application alternate name 2 (upper case)
%a3% application alternate name 3 (lower case)
%A3% application alternate name 3 (upper case)

If no application, NOAPPLICATION will be used.

Project

Pattern Interpretation
%p% project name (lower case)
%P% project name (upper case)
%p1% project alternate name 1 (lower case)
%P1% project alternate name 1 (upper case)
%p2% project alternate name 2 (lower case)
%P2% project alternate name 2 (upper case)
%p3% project alternate name 3 (lower case)
%P3% project alternate name 3 (upper case)

NOPROJECT if no project.

Current date

Pattern Interpretation
%d% current date (japanese format: YYYYMMDD)

14 Chapter 2. Contents

MAGE, Release 6.3

Offer

Pattern Interpretation
%ic1% CIC field ref1
%ic2% CIC field ref2
%ic3% CIC field ref3

Note: a CIC name is supposed to be descriptive and therefore ill-adapted to naming use. This explains its absence
from the list above.

Logical component

Pattern Interpretation
%lc1% LC field ref1
%lc2% LC field ref2
%lc3% LC field ref3

2.5.3 Naming convention counters

Counters are incremented each time they are used. This is why creating a component instance always begins with a
specific form, and not inside the admin application - this allow MAGE to always use the counters. However, should a
counter become desynchronized, it is possible to set its value through the admin.

They all begin at 1, and have different scopes. The scope is what defines the counter to increment in each case. For
example, an environment scope means there is one counter per environment. Two different items inside the same
environment using an environment scope will actually use the same counter.

Counters can be formatted by giving a number of figures after the classifier of the counter.

Environment counter

This counter has an environment scope.

%ce%

Project counter

This counter has a project scope (therefore multiple applications)

%cp%

Global counter

This counter has no scope. There is only one such counter.

%cg%

2.5. Conventions patterns 15

MAGE, Release 6.3

Model + environment counter

This counter has an environment + component description scope. There is one counter for each description in an
environment. Therefore, you can track your different databases without incrementing the counter for your application
servers.

%cem%

Model counter

This counter has a component description scope. There is one counter for each description.

%cm%

Instance counter

This counter is scoped by another component instance designated by a dotted-path expression ending on an instance
ID.

%cidotted.expression.to.id%

Example for the ‘port’ field of an application server, sitting on a Unix server designated by the ‘server’ field’:

1788+%ci2server.mage_id%

This will give a port, starting at 1789, which is unique for the Unix server (that means if there are many servers each
hosting multiple AS, each server will have ASs running on ports 1789, 1790, . . . without duplicates or holes in the
sequence.)

Note: MAGE always adds a field named mage_id to every component instance to help using this feature.

Relation counter

This counter has a component description scope. There is one counter for each description.

%n%

2.5.4 Expression patterns

This is a special pattern that can only be applied after all fields and relationships have been set on an instance. It
consists in a navigation expression, as detailed elsewhere.

For example, if your convention is that the JMX monitoring port is HTTP port + 1000, it can be specified as:

%nport%+1000

%n means expression pattern (n means navigation).

As this is applied in a second place, it is still possible to have a counter giving the value of port. This will work
perfectly:

port => 1788+%ci2server.mage_id%
jmx_port => %nport%+1000

16 Chapter 2. Contents

MAGE, Release 6.3

Note: every result of the application of any type of pattern is eventually valued as an integer - it it doesn’t work
nothing is done, if it works the result of the valuation becomes the new value for the field.

2.6 Security

2.6.1 Access security

By default MAGE gives everyone (anonymous users) read-only access to non-sensitive data. It means all projects, all
environments.

A middleware can be enabled inside MAGE settings (a line to uncomment) in order to prevent anonymous access.

The following permissions are defined at project level and are always applied (even to anonymous users):

• sensitive data (fields marked as such in the compoennt description, usually password-like fields) are only avail-
able to accounts with the allfields_componentinstance permission.

• uploading a new delivery requires the modify_delivery permission

• modifying an environment requires the modify_project permission

The following permissions are defined at project level and are only applied if not allowing anonymous access:

• viewing a project (including on the home page) requires the view_project permission

Super administrator accounts have access to everything without limitation.

The permissions above are specialized per project: one account can be allowed to see sensitive fields on one project
and not on another. There is also a set of permissions that are always applied to all the projects for which the user has
the modify_project permission:

• modify_delivery allows to create and modify deliveries

• install_installableset allows to reference a new installation of a given package

• del_backupset allows to archive, unarchive a backup

• validate_installableset allows to validate a package or backupset

• add_tag allows to create , modify or remove a tag.

2.7 Development help: model diagrams

These two diagrams are developer helpers.

2.6. Security 17

MAGE, Release 6.3

18 Chapter 2. Contents

MAGE, Release 6.3

2.7. Development help: model diagrams 19

MAGE, Release 6.3

20 Chapter 2. Contents

Python Module Index

r
ref.models, 6

21

MAGE, Release 6.3

22 Python Module Index

Index

A
application (ref.models.LogicalComponent at-

tribute), 7

B
buildDate (ref.models.Environment attribute), 9

C
ComponentImplementationClass (class in

ref.models), 8
ComponentInstance (class in ref.models), 10

D
deleted (ref.models.ComponentInstance attribute), 10
description (ref.models.ComponentImplementationClass

attribute), 8
description (ref.models.Environment attribute), 9
description (ref.models.LogicalComponent at-

tribute), 7
destructionDate (ref.models.Environment at-

tribute), 9

E
Environment (class in ref.models), 9
environments (ref.models.ComponentInstance

attribute), 10

I
implements (ref.models.ComponentImplementationClass

attribute), 8
instantiates (ref.models.ComponentInstance

attribute), 10

L
LogicalComponent (class in ref.models), 7

M
manager (ref.models.Environment attribute), 9

N
name (ref.models.ComponentImplementationClass at-

tribute), 8
name (ref.models.ComponentInstance attribute), 10
name (ref.models.Environment attribute), 9
name (ref.models.LogicalComponent attribute), 7

P
project (ref.models.Environment attribute), 9

R
ref.models (module), 6

S
scm_trackable (ref.models.LogicalComponent at-

tribute), 7
sla (ref.models.ComponentImplementationClass at-

tribute), 8

T
template_only (ref.models.Environment attribute), 9
typology (ref.models.Environment attribute), 9

23

	Introduction
	Contents
	Installation with Git
	Installation with Docker
	Preparing MAGE for first use
	Mage Query Language (MQL)
	Conventions patterns
	Security
	Development help: model diagrams

	Python Module Index
	Index

